开场白: 作为一个人才网站的搜索功能,不但需要考滤搜索性能与效率,与需要注意用户体验,主要体现于用户对搜索结果的满意程度.大家都知道Lucene的排序中,如果单纯使用Lucene的DefaultSimilarity作为一个相似度的排序,意思是说总体上越相关的记录需要排得越前,但事与愿违.这样使用户体现也表现得相当糟糕.关键字"程序员"标题中也不能保证全部都匹配到(搜索结果来自 www.jobui.com 职友集) [下图]
![](https://images.cnblogs.com/cnblogs_com/ibook360/201111/201111141134557659.jpg)
起因:之很长一段时间我都注重于搜索性能与速度的提高,而对于搜索结果对用户的体验却一直没有太多的关注,现在需要关注一下用户体现这个东西了.同时技术上也作为一些调整.具体表现如下. 1,用户最需要的搜索结果是标题命中. 2,因为我们从事人才招聘行业,所以职位的发布时间需要最新的. 所以经过各部门商量,职位搜索的结果排序应该是,相关度优先,然后才是职位的发布时间倒序.即如果关键字匹配是一定要全部命中了才会排在第一位,然后再是只命中一部分关键字记录.具体如下图,(搜索"php 开发",这样的话,只有php,开发这两个关键字都全部匹配了才会排前.然后全部命中关键字的记录按职位的发布时间来递减.)
开始:主要是继承Lucene中的Similarity作为一个相似度的实现,这里简单介绍一下相关的介绍 主要是几个排序影响因素去想的 在看代码之前先看看我们Lucene排序的一些影响因为,大家可以在搜索的时候,开启Explain的选项,这样就能看得清楚了 比如说,我现在要搜索 "开发工程" 这些关键字,然后就会把每一个Document的得分情况都列出来,大家就知道了,同时大家有没发现,这一个详细情况跟Similarity的需要实现的方法的因素基本都是对应的..比如 idf,tf queryNorm等方法..这样大家就有一个可以参考分析的方法了.
200.0 = (MATCH) sum of: 100.0 = (MATCH) weight(Name:开发^100.0 in 5), product of: 100.0 = queryWeight(Name:开发^100.0), product of: 100.0 = boost 1.0 = idf(docFreq=4, maxDocs=6) 1.0 = queryNorm 1.0 = (MATCH) fieldWeight(Name:开发 in 5), product of: 1.0 = tf(termFreq(Name:开发)=0) 1.0 = idf(docFreq=4, maxDocs=6) 1.0 = fieldNorm(field=Name, doc=5) 100.0 = (MATCH) weight(Name:工程^100.0 in 5), product of: 100.0 = queryWeight(Name:工程^100.0), product of: 100.0 = boost 1.0 = idf(docFreq=2, maxDocs=6) 1.0 = queryNorm 1.0 = (MATCH) fieldWeight(Name:工程 in 5), product of: 1.0 = tf(termFreq(Name:工程)=1) 1.0 = idf(docFreq=2, maxDocs=6) 1.0 = fieldNorm(field=Name, doc=5) 0.0 = (MATCH) weight(Info:开发^0.0 in 5), product of: 0.0 = queryWeight(Info:开发^0.0), product of: 0.0 = boost 1.0 = idf(docFreq=4, maxDocs=6) 1.0 = queryNorm 1.0 = (MATCH) fieldWeight(Info:开发 in 5), product of: 1.0 = tf(termFreq(Info:开发)=2) 1.0 = idf(docFreq=4, maxDocs=6) 1.0 = fieldNorm(field=Info, doc=5) 0.0 = (MATCH) weight(Info:工程^0.0 in 5), product of: 0.0 = queryWeight(Info:工程^0.0), product of: 0.0 = boost 1.0 = idf(docFreq=0, maxDocs=6) 1.0 = queryNorm 1.0 = (MATCH) fieldWeight(Info:工程 in 5), product of: 1.0 = tf(termFreq(Info:工程)=0) 1.0 = idf(docFreq=0, maxDocs=6) 1.0 = fieldNorm(field=Info, doc=5)
现在先看看实现 Similarity 类的方法
1 package com.kernaling; 2 3 import org.apache.lucene.index.FieldInvertState; 4 5 public class BaicaiPositionSimilarity extends Similarity { 6 7 /** Implemented as 8 *state.getBoost()*lengthNorm(numTerms)
, where 9 *numTerms
is { @link FieldInvertState#getLength()} if { @link 10 * #setDiscountOverlaps} is false, else it's { @link 11 * FieldInvertState#getLength()} - { @link 12 * FieldInvertState#getNumOverlap()}. 13 * 14 *WARNING: This API is new and experimental, and may suddenly 15 * change.
*/ 16 @Override 17 public float computeNorm(String field, FieldInvertState state) { 18 final int numTerms; 19 if (discountOverlaps) 20 numTerms = state.getLength() - state.getNumOverlap(); 21 else 22 numTerms = state.getLength(); 23 return (state.getBoost() * lengthNorm(field, numTerms)); 24 } 25 26 /** Implemented as1/sqrt(numTerms)
. */ 27 @Override 28 public float lengthNorm(String fieldName, int numTerms) { 29 // System.out.println("fieldName:" + fieldName + "\tnumTerms:" + numTerms); 30 // return (float)(1.0 / Math.sqrt(numTerms)); 31 return 1.0f; 32 } 33 34 /** Implemented as1/sqrt(sumOfSquaredWeights)
. */ 35 @Override 36 public float queryNorm(float sumOfSquaredWeights) { 37 // return (float)(1.0 / Math.sqrt(sumOfSquaredWeights));\ 38 return 1.0f; 39 } 40 41 /** Implemented assqrt(freq)
. */ 42 // term freq 表示 term 在一个document的出现次数,这里设置为1.0f表示不考滤这个因素影响 43 // @Override 44 // public float tf(float freq) { 45 return 1.0f; 46 47 } 48 49 /** Implemented as1 / (distance + 1)
. */ 50 //这里表示匹配的 term 与 term之间的距离因素,同样也不应该受影响 51 @Override 52 public float sloppyFreq(int distance) { 53 return 1.0f; 54 } 55 56 /** Implemented aslog(numDocs/(docFreq+1)) + 1
. */ 57 //这里表示匹配的docuemnt在全部document的影响因素,同理也不考滤 58 @Override 59 public float idf(int docFreq, int numDocs) { 60 return 1.0f; 61 } 62 63 /** Implemented asoverlap / maxOverlap
. */ 64 //这里表示每一个Document中所有匹配的关键字与当前关键字的匹配比例因素影响,同理也不考滤. 65 @Override 66 public float coord(int overlap, int maxOverlap) { 67 return 1.0f; 68 } 69 70 // Default false 71 protected boolean discountOverlaps; 72 73 /** Determines whether overlap tokens (Tokens with 74 * 0 position increment) are ignored when computing 75 * norm. By default this is false, meaning overlap 76 * tokens are counted just like non-overlap tokens. 77 * 78 *WARNING: This API is new and experimental, and may suddenly 79 * change.
80 * 81 * @see #computeNorm 82 */ 83 public void setDiscountOverlaps(boolean v) { 84 discountOverlaps = v; 85 } 86 87 /**@see #setDiscountOverlaps */ 88 public boolean getDiscountOverlaps() { 89 return discountOverlaps; 90 } 91 }
按上面的相似度因素影响,基本上都设置为不受其他影响了,现在只剩下了关键字匹配数据的影响了,也就是我们需求中需要的. 然后做一个测试类:
1 package com.kernaling; 2 3 import java.io.File; 4 import java.io.StringReader; 5 6 import org.apache.lucene.document.Document; 7 import org.apache.lucene.document.Field; 8 import org.apache.lucene.index.IndexWriter; 9 import org.apache.lucene.index.Term; 10 import org.apache.lucene.index.IndexWriter.MaxFieldLength; 11 import org.apache.lucene.search.BooleanClause; 12 import org.apache.lucene.search.BooleanQuery; 13 import org.apache.lucene.search.Explanation; 14 import org.apache.lucene.search.IndexSearcher; 15 import org.apache.lucene.search.ScoreDoc; 16 import org.apache.lucene.search.Sort; 17 import org.apache.lucene.search.SortField; 18 import org.apache.lucene.search.TermQuery; 19 import org.apache.lucene.search.TopDocs; 20 import org.apache.lucene.search.TopFieldCollector; 21 import org.apache.lucene.store.NIOFSDirectory; 22 import org.wltea.analyzer.IKSegmentation; 23 import org.wltea.analyzer.Lexeme; 24 import org.wltea.analyzer.lucene.IKAnalyzer; 25 26 public class LuceneSortSample { 27 public static void main(String[] args) { 28 try{ 29 30 String path = "./Index"; 31 IKAnalyzer analyzer = new IKAnalyzer(); 32 MySimilarity similarity = new MySimilarity(); 33 34 boolean isIndex = false; // true:要索引,false:表示要搜索 35 36 if(isIndex){ 37 IndexWriter writer = new IndexWriter(new NIOFSDirectory(new File(path)),analyzer,MaxFieldLength.LIMITED); 38 writer.setSimilarity(similarity); //设置相关度 39 40 Document doc_0 = new Document(); 41 doc_0.add(new Field("Name","java 开发人员", Field.Store.YES, Field.Index.ANALYZED)); 42 doc_0.add(new Field("Info","招聘 网站开发人员,要求一年或以上工作经验", Field.Store.YES, Field.Index.ANALYZED)); 43 doc_0.add(new Field("Time","20100201", Field.Store.YES, Field.Index.NOT_ANALYZED)); 44 writer.addDocument(doc_0); 45 46 47 Document doc_1 = new Document(); 48 doc_1.add(new Field("Name","高级开发人员(java 方向)", Field.Store.YES, Field.Index.ANALYZED)); 49 doc_1.add(new Field("Info","需要有四年或者以上的工作经验,有大型项目实践,java基本扎实", Field.Store.YES, Field.Index.ANALYZED)); 50 doc_1.add(new Field("Time","20100131", Field.Store.YES, Field.Index.NOT_ANALYZED)); 51 writer.addDocument(doc_1); 52 53 54 Document doc_2 = new Document(); 55 doc_2.add(new Field("Name","php 开发工程师", Field.Store.YES, Field.Index.ANALYZED)); 56 doc_2.add(new Field("Info","主要是维护公司的网站php开发,能独立完成网站的功能", Field.Store.YES, Field.Index.ANALYZED)); 57 doc_2.add(new Field("Time","20100201", Field.Store.YES, Field.Index.NOT_ANALYZED)); 58 writer.addDocument(doc_2); 59 60 61 Document doc_3 = new Document(); 62 doc_3.add(new Field("Name","linux 管理员", Field.Store.YES, Field.Index.ANALYZED)); 63 doc_3.add(new Field("Info","管理及维护公司的linux服务器,职责包括完成mysql数据备份及日常管理,apache的性能调优等", Field.Store.YES, Field.Index.ANALYZED)); 64 doc_3.add(new Field("Time","20100201", Field.Store.YES, Field.Index.NOT_ANALYZED)); 65 writer.addDocument(doc_3); 66 67 68 Document doc_4 = new Document(); 69 doc_4.add(new Field("Name","lucene开发工作师", Field.Store.YES, Field.Index.ANALYZED)); 70 doc_4.add(new Field("Info","需要两年或者以上的从事lucene java 开发工作的经验,需要对算法,排序规则等有相关经验,java水平及基础要扎实", Field.Store.YES, Field.Index.ANALYZED)); 71 doc_4.add(new Field("Time","20100131", Field.Store.YES, Field.Index.NOT_ANALYZED)); 72 writer.addDocument(doc_4); 73 74 75 Document doc_5 = new Document(); 76 doc_5.add(new Field("Name","php 软件工程师", Field.Store.YES, Field.Index.ANALYZED)); 77 doc_5.add(new Field("Info","具有大量的php开发经验,如熟悉 java 开发,数据库管理则更佳", Field.Store.YES, Field.Index.ANALYZED)); 78 doc_5.add(new Field("Time","20100130", Field.Store.YES, Field.Index.NOT_ANALYZED)); 79 writer.addDocument(doc_5); 80 81 writer.close(); 82 System.out.println("数据索引完成"); 83 }else{ 84 IndexSearcher search = new IndexSearcher(new NIOFSDirectory(new File(path))); 85 search.setSimilarity(similarity); 86 String keyWords = "java开发"; 87 88 89 String fiels[] = {"Name","Info"}; 90 91 BooleanQuery bq = new BooleanQuery(); 92 for(int i=0;i
建立完索引后然后就可以直接搜索了.效果图如下: 可以看到,我们现在搜索关键字"开发工程", 然后就可以看到DocID:为 0,2为关键字全部命中的文档,然后这两个文档就按时间倒序排了. 然后,DocId 1,4,5的话,就只匹配到部分的关键字,它肯定会比全部命中关键字的记录要排序要后,然后中命中部分关键字的记录又会按发布时间来倒序排了一次 对了,我是用 Lucene3.0 作为开发包的.与Lucene2.XX的很多接口都改了,包括Similarity 的继承类的方法也不同, 所以大家要注思,不过经过测试,只要相同的实现那么效果也是一样的. 注意:从上边的测试结果可以看到一个疑问,这些记录匹配的关键字 开发工程 中,无论是命中全部关键字还是一个,得到的score都是一样的,但是排序的时候却按我们之前设置的意义去排序,理论上来说,只匹配一半的关键字,score会是全部匹配的一半的,这里的话,不知道是否是一个bug.有待继续研究.同时职友集www.jobui.com与百才招聘 www.baicai.com 这两个网站的搜索功能还没有把这个想法用到上边去,现在只在本地的测试服务器中有效,因为这段时间有其他事情要做.请大家见谅.过年后左右,大家会有一个全新的搜索体验..谢谢. 摘自:http://kernaling-wong.iteye.com/blog/586043